
J O U R N A L O F M A T E R I A L S S C I E N C E 3 7 (2 0 0 2 ) 117 – 126

Densification and strength evolution

in solid-state sintering

Part II Strength model

XIAOPING XU, PEIZEN LU, RANDALL M. GERMAN
Center for Innovative Sintered Products, P/M Lab, 147 Research West,
Pennsylvania State University, University Park, PA 16802-6809, USA
E-mail: rmg4@psu.edu

A compact gains strength in sintering through low-temperature interparticle bonding,
followed by further strength contributions from high-temperature densification. On the
other hand, thermal softening substantially reduces a compact’s strength at high
temperatures. Therefore, the in situ strength during sintering is determined by the
competition among interparticle neck growth, densification, and thermal softening.
Distortion in sintering occurs when the compact is weak. Most strength models for sintered
materials are semi-empirical relations based on the sintered fractional density. These
models do not include microstructure or sintering cycle parameters; thus, they do not
provide guidelines for thermal cycle design to improve compact dimensional control. A
strength evolution model is derived which combines sintering theories and microstructure
parameters, including interparticle neck size, solid volume fraction, and particle
coordination number. The model predicts sintered strength and when combined with
thermal softening gives a good prediction of in situ strength. The validity of the model is
verified by comparison to experimental data for sintered and in situ strength of bronze and
steel powders. C© 2002 Kluwer Academic Publishers

1. Introduction
Sintering starts with shaped powders and produces en-
gineered components via a high temperature thermal
process that substantially strengthens the compact. A
component can routinely increase strength by a factor of
200 to 500 from the green condition to the sintered state.
To transform the loosely bonded particles into a high-
performance structure involves many changes that in-
clude interparticle bonding, densification, microstruc-
ture coarsening, and concomitant strengthening. The
evolution of mechanical properties is important to many
sintered materials and often provides a basis for evalua-
tion of a sintering process [1]. On the other hand, the in
situ strength as evolving during sintering has significant
impact on both densification and dimensional precision.
For example, a low in situ strength allows densification,
but is associated with distortion. Hence, an improved
understanding of strength evolution would assist in op-
timizing sintering cycles, achieving a good combina-
tion of densification and shape retention. Unfortunately,
fundamental understanding of sinter strengthening is
limited.

Most strength models are semi-empirical and sim-
ply express strength in terms of fractional density with
little regard to the underlying microstructure [2]. Con-
sequently, these models cannot assist in thermal cycle
design for improved dimensional precision in sintered

materials. The importance of interparticle neck growth
to strength was addressed in prior studies [3–7], but
only a few [4, 6] include interparticle neck size.

A new model is presented for strength evolution dur-
ing sintering. It relies on basic sintering neck growth
calculations to predict the sintered and in situ strength
based on interparticle neck size, solid volume fraction,
particle coordination number, stress concentration, and
thermal softening. The model is tested using experi-
mental results of strength for both prealloyed Cu-10Sn
bronze and mixed elemental Fe-2Ni-0.9C steel pow-
ders. The in situ strength during sintering depends on
the inherent parent material strength (at the test temper-
ature), the square of neck size ratio, sintered density,
and particle packing coordination number.

2. Model development
Sintering involves heating a powder compact to a tem-
perature where atomic motion leads to bond growth
between contacting particles. Strength arises from the
degree of bonding between contacting particles. Com-
puter simulation allows calculation of the interparticle
bond size and density in response to the sintering cy-
cle (heating rate, temperature, hold time). Our model
also considers the stress concentration associated with
the neck of contacting particles, changing particle
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coordination number with densification, and thermal
softening of the material.

2.1. Computer simulation
Various transport mechanisms act simultaneously dur-
ing sintering to deposit mass at the interface between
adjacent particles [8]. Possible solid-state transport
mechanisms include surface diffusion, volume dif-
fusion from the surface, evaporation and condensa-
tion, grain boundary diffusion, plastic flow, dislocation
climb, and volume diffusion from the particle contact
area [1].

2.1.1. Calculation approach
The neck size ratio X/D and sintering shrinkage
�L/L0 can be calculated through computer simulation.
Here X is the diameter of the neck between contacting
spheres of diameter D, L0 is the initial length, and �L
is the change in length. During sintering, the amount of
material transported to the neck region is expressed by
the following equation,

dVt

dt
= JAr (1)

where dVt is the volume of material arriving at the neck
during the time interval dt, J denotes the flux of mate-
rial moving into the neck, and Ar stands for the total area
through which material passes. Thus, the neck growth
rate is calculated by Equation 2:

Ẋ = JAr(
dVt

dX

) (2)

To calculate the neck growth rate using Equation 2,
geometric variables such as the contact area Ar , neck
volume change dVt with respect to neck growth dX , and
diffusion flux J must be known. Flux equations were
derived previously [9, 10], and are summarized in Ap-
pendix A, while the geometric variables are calculated
below.

2.1.2. Geometrical variables
Fig. 1 shows the two-sphere sintering model with spec-
ified geometric variables. Based on the method orig-
inally developed by German and Munir [11, 12] and
an assumed circular neck shape, Sierra and Lee [13]
calculated the neck volume Vt , as follows:

Vt = 2π

[(
X2 p

4
+ X p2 + 5

4
p3

)
(1 − cos φ)

+ 2p3 + X p2

4
(cos 2φ − 1) + p3

12
(1 − cos 3φ)

]
(3)

The same method was used in other studies [9, 10, 14].
The angle φ can be calculated based on the relation

Figure 1 A schematic diagram showing the two-sphere sintering model
with specified geometric variables.

defined in Fig. 1 as follows:

sin φ = L0 − �L

2

(
p + D

2

) (4)

where L0 is the original center-to-center distance of the
particles, and �L is the change in that distance due to
densification. Geometry gives the following relation,

(
p + D

2

)2

= 1

4
(L0 − �L)2 +

(
p + X

2

)2

(5)

To calculate the term dVt/dX in Equation 2, another
equation is needed for volume conservation. The vol-
ume of the starting spheres is the same as the total
volume of the particles and neck during sintering. Al-
ternatively, the volume of mass arriving at the neck
region is the same as the volume loss at the two con-
tacting spheres. During densification, the contact area
between the adjacent particles flattens due to shrinkage.
Therefore, the volume loss V1 at the spheres is given as
follows,

V1 = π

3

(
p

L0 − �L

(Dt/2) + p
+ Dt

2
− L0 + �L

)2

×
(

Dt − p
L0 − �L

(Dt/2) + p
+ L0 − �L

)
(6)

where Dt is the particle diameter at any instant during
sintering. Fundamentally there are two sources of mass
to grow the sinter bonds—the particle surface (adhesion
mechanisms such as surface diffusion) and the contact
plane between the particles (bulk mechanisms such as
grain boundary diffusion). For adhesion mechanisms,
which give no shrinkage, the volume loss at the particles
is caused by a reduction in particle diameter. Therefore,
the volume loss V2 can be expressed as follows:

V2 = π

6

(
D3 − D3

t

)
(7)

According to volume conservation during sintering,

1

2
Vt = V1 + 1

NC
V2 (8)
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where NC is the particle coordination number. For ad-
hesion mechanisms the coordination number NC and
interparticle distance L0 are constant, while for densi-
fication mechanisms the particle diameter D remains
unchanged, but particle coordination number NC and
interparticle distance L0 change. Typically the volume
conservation boundary condition and geometric rela-
tions are used along with mass transport models and
material parameters to calculate the progressive mi-
crostructure and density changes during sintering.

2.1.3. Model implementation
When the values of Ar and dVt/dX are computed for
each transport mechanism, the neck growth rate equa-
tion defined by Equation 2 can be applied. According
to the method used previously [9, 10, 13, 14], these rate
equations are computed separately for densification and
adhesion mechanisms. The instantaneous neck growth
rate contributions from all adhesion mechanisms is
computed using the relation suggested by Hwang and
German [9],

Ẋ a = Ẋ sd + Ẋ ec + Ẋva (9)

where the subscript a represents adhesion mecha-
nisms, and sd, ec, and va stand for surface diffusion,
evaporation-condensation, and volume diffusion from
the particle surface, respectively. As sintering time pro-
ceeds in an interval of �t , the new value of neck size
is calculated using Equation 10,

Xnew = Xold + Ẋ a�t (10)

The new system geometry is then updated based on the
calculated new neck size. The next step is to calculate
the instantaneous neck growth rate contributions from
densification mechanisms,

Ẋd = Ẋgb + Ẋvd (11)

where the subscript d represents densification mecha-
nisms, and gb and vd represent grain boundary diffu-
sion and volume diffusion from the interparticle grain
boundary, respectively. Accordingly, the neck size is
updated by the expression,

Xnew = Xold + Ẋd�t (12)

Knowing the geometry changes caused by both the ad-
hesion and densification mechanisms, the simulation
proceeds to the next time interval �t and repeats the
procedure. The geometric limit for the initial stage is
the half-cone formula proposed by German and Munir
[11, 12]. When the limit is reached, the angle φ as de-
fined in Fig. 1 satisfies the following relation,

φ = sin−1
(

1 − 2

NC

)
(13)

where NC is the particle coordination number as deter-
mined by the fractional packing density.

TABLE I Material constants and diffusion data for Cu-10Sn bronze

Atomic volume: 1.76 × 10−29m3

Theoretical density: 8.88 g/cm3

Melting point: 1230 K
Surface energy: 1.7 J/m2

Activation energy for surface diffusion: 225 kJ/mol
Frequency factor times effective surface thickness for surface

diffusion: 6.4 × 10−11m3/s
Activation energy for volume diffusion: 207 kJ/mol
Frequency factor for volumne diffusion: 6.0 × 10−10m2/s
Activation energy for grain boundary diffusion: 114 kJ/mol
Frequency factor times grain boundary thickness for boundary

diffusion: 7.7 × 10−15m3/s
Activation energy for evaporation-condensation: 324 kJ/mol
Pre-exponential vapor pressure: 8.6 × 104 MPa

2.1.4. Neck growth and shrinkage results
Computer simulations were conducted to examine ef-
fects of sintering parameters, such as peak tempera-
ture, isothermal hold time, and heating rate on inter-
particle neck growth and densification. The simulation
was conducted using SintWin (version 2.3, P/M Lab,
Pennsylvania State University) [9–14]. Table I lists the
material constants estimated for the Cu-10Sn bronze
powder. Sintering simulations are very sensitive to the
activation energies, which are sensitive to composition
and impurities. For this work, the activation energies
for surface diffusion and grain boundary diffusion were
selected to give agreement between the simulated and
experimental results. Due to the scarcity of diffusion
data for bronze, diffusion data of copper were first used
to estimate the activation energies. The reported acti-
vation energy for copper surface diffusion range from
200 kJ/mol to 235 kJ/mol [15], while that for grain
boundary diffusion is in the range from 102 to 120
kJ/mol [16]. The selected activation energies for bronze
(225 and 114 kJ/mol) were in the range of reported val-
ues for copper.

As examples of the simulation results, Fig. 2 shows
the predicted neck size ratio (X/D) versus time for

Figure 2 Simulation results of neck size ratio (X/D) versus times for
18 µm Cu-10Sn bronze powder with an initial fractional density of 55%
heated from 20◦C at 5◦C/min and held at various peak temperatures.
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Figure 3 Simulation results of shrinkage (�L/L0) versus time for
18 µm Cu-10Sn bronze powder with an initial fractional density of 55%
heated from 20◦C at 5◦C/min and held at various peak temperatures.

temperatures from 500 to 850◦C. The time includes
heating at 5◦C/min and that of the isothermal hold. To
match with the experimental study, the particle size was
18 µm and green density was 55% of theoretical. Fig. 3
plots the parallel shrinkage versus time results. These
plots show an increase in sintering temperature and time
improves interparticle neck growth and densification.

Similarly, computer simulation was performed on
4 µm mixed elemental Fe-2Ni-0.9C steel with a 57%
green density to examine the effect of peak sintering
temperature on interparticle neck growth and shrink-
age. The simulation was run up to 800◦C using a heat-
ing rate of 5◦C/min, but was limited because the model
does not allow for the phase transformation during heat-
ing. Table II shows the material constants and diffusion
data applicable to α-Fe for the Fe-2Ni-0.9C steel. Again
the activation energies for surface diffusion and grain
boundary diffusion were adjusted to achieve agreement
with the experimental data. The diffusion data were
based on iron, due to lack of data for Fe-2Ni-0.9C
(which is still largely an elemental blend during initial
heating). The handbook activation energies for surface
diffusion and grain boundary diffusion for α-Fe are 239

T ABL E I I Material constants and diffusion data for Fe-2Ni-0.9C steel

Atomic volume: 7.98 × 10−30m3

Theoretical density: 8.02 g/cm3

Melting point: 1811 K
Surface energy: 1.95 J/m2

Activation energy for surface diffusion: 240 kJ/mol
Frequency factor times effective surface thickness for surface

diffusion: 2.7 × 10−9m3/s
Activation energy for volume diffusion: 251 kJ/mol
Frequency factor for volumne diffusion: 2.0 × 10−4m2/s
Activation energy for grain boundary diffusion: 115 kJ/mol
Frequency factor times grain boundary thickness for boundary

diffusion: 1.73 × 10−14m3/s
Activation energy for evaporation-condensation: 340 kJ/mol
Pre-exponential vapor pressure: 7.4 × 104 MPa

Figure 4 A plot of the simulated neck ratio (X/D) as a function of
sintering temperature for mixed elemental Fe-2Ni-0.9C steel powder
stating at 57% density with a 4 µm particle size, heated from 20◦C at
5◦C/min. Note no isothermal hold is employed in the simulation.

Figure 5 A plot of the simulated shrinkage (�L/L0) as a function of
sintering temperature for 4 µm mixed elemental Fe-2Ni-0.9C steel pow-
der starting with 57% green density and 20◦C heated at 5◦C/min. Note
no isothermal hold is used in the simulation.

kJ/mol and 128 kJ/mol [1], respectively. Measured acti-
vation energy for surface diffusion for iron range from
176 to 250 kJ/mol [15], while that for grain bound-
ary diffusion for α-Fe range from 105 to 180 kJ/mol
[17, 18]. Moreover, the reported activation energy of
grain boundary diffusion for Fe-5Ni was 115 kJ/mol
[18]. Therefore, the selected values for surface diffu-
sion and grain boundary diffusion (240 and 115 kJ/mol)
were reasonable. Example simulation results of neck
size ratio and shrinkage versus sintering temperature
are shown in Figs 4 and 5, respectively. The results
showed both neck growth and shrinkage increased with
sintering temperature, with neck growth active at lower
temperatures due to surface diffusion.
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Figure 6 A schematic of clustered monosized spherical particles with
diameter D and interparticle bond diameter X to show the resolved bond
area in the plane normal to the tensile axis.

2.2. Strength model
Sintering reduces porosity and increases the interparti-
cle bond size, thereby enhancing compact strength. In a
powder compact, the bond between contacting particles
or grains dictates strength. In developing the strength
model, we assume monosized spherical particles. Fig. 6
shows a schematic of a three-particle cluster with parti-
cle diameter D and interparticle bond diameter X . Let
θ be the angle between the bond plane and horizontal
plane. An effective bond area is defined as a projected
area into the horizontal plane, normal to an assumed
vertical tensile loading. An effective bond area Sp is
calculated as follows,

Sp =
(

π

4

)
X2 cos θ (14)

corresponding to a projection onto the plane normal to
the tensile direction.

There are several interparticle bonds per particle.
However, not all the bonds contribute to tensile strength.
German [19] used a concept of effective number of
bonds Nc,eff, which estimates the number of bonds frac-
tured during a tensile test.

NC,eff = NC

π
(15)

where NC is the average particle packing coordination
number. Therefore, the total effective bond area Sp,total
can be calculated using Equation 16 as the product of
the effective coordination number and individual effec-

tive bond area,

Sp,total =
(

NC

4

)
X2 cos θ (16)

Hence, for each particle cluster, such as shown in Fig. 6,
the ratio of total effective bond area and the projected
particle is calculated as,

R = Sp,total

Sp,particle
=

(
NC

4

)
X2 cos θ(

π

4

)
D2

=
(

NC

π

)(
X

D

)2

cos θ

(17)

where Sp,particle is the projected area of a particle on
the horizontal plane. We assume the angle θ is ran-
domly oriented among contacting particles. Consider-
ing there are many such particle clusters on the fracture
surface, the ratio R can be computed using the follow-
ing integration,

∫ π

2

0

(
NC

π

)(
X

D

)2

cos θ dθ =
(

NC

π

)(
X

D

)2

(18)

Due to a reduced load bearing area, the nominal strength
of a porous material can be approximated as σ0VS,
where σ0 is the strength of a wrought material and VS is
fractional density. Therefore, the strength of a sintered
compact can be estimated as the product of the nominal
strength and the ratio of total effective bond area to the
projected particle area [19],

σ = σ0VS
NC

Kπ

(
X

D

)2

(19)

where σ is the measured strength and K is the stress
concentration factor associated with the interparticle
neck, which reduces the apparent bond strength. The
stress concentration factor K is discussed in Appendix
B. The solid coordination number is linked to the den-
sity for monosized spherical particle compacts as fol-
lows [1]:

NC = 14 − 10.3(1 − VS)0.38 (20)

The in situ strength in sintering can be approximated
by adding a thermal softening factor into Equation 19.
An empirical thermal softening representation for 96%
dense sintered bronze was given by a sigmoid function
[6],

fT = 1.05

1 + exp

(
T − 720

138

) (21)

where fT is the remaining strength fraction, and T is
the absolute temperature. Therefore, the in situ strength
of a specimen is expressed as,

σ0(T ) = fT σ0 (22)
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where σ0 is the strength of a wrought material at room
temperature, and σ0(T ) is the in situ strength of a
wrought material at temperature T . Therefore, com-
bining Equations 19, 20, and 22 gives a general form
of in situ strength during sintering as follows:

σin situ = fT σ0VS

(
14 − 10.3(1 − VS)0.38

Kπ

)(
X

D

)2

(23)

where σin situ stands for the in situ strength of a compact
at a test temperature T . Note this model predicts both
the in situ strength and room temperature strength of
a sintered structure, depending on the test temperature
T . The neck size ratio X/D and solid fractional density
VS are determined by the sintering cycle and are based
on computer simulations in this work.

3. Model testing
The strength model represented by Equation 23 was
verified by comparing model predictions with experi-
mental results reported in the companion paper [20].
The interparticle neck size ratio and sintering densi-
fication were obtained by computer simulation with
input of various parameters as discussed earlier, in-
cluding diffusion data, materials constants, and sinter-
ing parameters. The stress concentration factor K was
estimated using the procedure shown in Appendix B.
Comparisons between model predictions and measured
strengths for Cu-10Sn bronze are shown in Figs 7 and 8,
in which model predictions are in good agreement with
the experimental results. The predicted and measured
strengths were positively correlated (statistical signifi-
cance greater than 99% confidence) at correlation coef-
ficients of 0.98 and 0.99, respectively. The average dif-
ference between the experiment and model was 8.6%
and 10.1%, respectively.

Figure 7 Experimental data and model predictions of room tempera-
ture transverse rupture strength versus peak sintering temperature (0 and
60 min hold) for 18 µm prealloyed Cu-10Sn bronze powder heated at
5◦C/min in hydrogen.

Figure 8 Model predictions compared with experimental results for the
room temperature transverse rupture strength versus isothermal hold time
for 18 µm prealloyed Cu-10Sn bronze powder heated at 5◦C/min to the
indicated temperature in hydrogen.

Figure 9 Model predictions of in situ transverse rupture strength during
cooling from various peak sintering temperatures for 18 µm prealloyed
Cu-10Sn bronze powder. Experimental data are plotted for comparison
with model predictions.

The in situ strength data for the Cu-10Sn bronze ob-
tained during cooling were used to further test the model
predictions. The thermal softening behavior was ob-
tained in a prior study [6]. Fig. 9 compares model pre-
dictions and experimental data during cooling, showing
good agreement. A correlation coefficient of 0.99 was
obtained, and the statistical significance was greater
than 99%. The average deviation between model cal-
culations and experimental data was 6.2%.

The model was further tested against experimental
data for sintered mixed elemental powder Fe-2Ni-0.9C
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Figure 10 Model calculations of room temperature bend strength versus
sintering temperature for 4 µm mixed elemental Fe-2Ni-0.9C steel pow-
der heated at 5◦C/min. Experimental data are included for comparison.

Figure 11 Model calculations of room temperature ultimate tensile
strength versus sintering temperature for 4 µm mixed elemental Fe-2Ni-
0.9C steel powder heated at 5◦C/min. Experimental data are included
for comparison.

steel. Fig. 10 compares sintered bend strength and
model predictions based on computer simulated neck
growth and densification. Computer simulation was
performed up to 800◦C. As shown in Fig. 10, good
agreement was observed between the experimental data
and calculations. The correlation coefficient was greater
than 0.97, giving a statistical confidence greater than
99%. The average deviation between model calcula-
tions and experimental data was 18.2%. Figs 11 and 12
compare model calculated and measured room temper-
ature ultimate tensile strength for the sintered Fe-2Ni-
0.9C steel. Since the simulation was not extended into
the γ -Fe region, the sintered neck size ratio was esti-
mated from the sintered density VS and initial fractional

Figure 12 Model calculations of room temperature ultimate tensile
strength versus peak temperature isothermal hold time for 4 µm mixed
elemntal Fe-2Ni-0.9C steel powder heated at 5◦C/min. Experimental
data are included for comparison.

density VO as the follows:

(
X

D

)2

= 4

[
1 −

(
VO

VS

) 1
3

]
(24)

Equation 24 is valid only for a neck size ratio smaller
than 0.5. The model calculated ultimate tensile strength
is in good agreement with experimentally measured
data. The correlation coefficients were statistically sig-
nification with greater than 99% confidence at 0.99 and
0.98, respectively. Further, the average deviations be-
tween predicted and measured strengths in Figs 11 and
12 were 14.7% and 15.7%, respectively.

4. Discussion
The initial in situ strength of a compact in sintering
emerges from the interparticle bonding between con-
tacting particles. This is especially true during initial
heating, since surface transport is favored at low tem-
peratures, leading to bonding and strengthening with
little densification [20]. The strength model given by
Equation 23 demonstrates the importance of the inter-
particle neck size ratio (X/D). This effect of the neck
size ratio on sintered strength is demonstrated in Fig. 13,
a plot of sintered strength versus the square of neck size
ratio for the Cu-10Sn bronze. Here the neck size ratios
were obtained using computer simulation, while sin-
tered transverse rupture strengths were measured ex-
perimentally. The plot in Fig. 13 shows an approxi-
mate linear relation between sintered strength and the
square of neck size ratio, supporting the model. On the
other hand, densification becomes evident at high sin-
tering temperatures, further adding strength to the com-
pact. Densification has a two-fold effect on strength.
An increase in sintered density increases the net load-
bearing section within the sintered structure as well as
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Figure 13 Experimental room temperature sintered transverse rupture
strength versus the square of the neck size ratio (X/D)2 for sintered
18 µm prealloyed Cu-10Sn bronze powder where the neck size is com-
puter simulated for each sintering cycle. Even though this plot ignores
density changes, the dominant role of neck size is apparent.

Figure 14 A plot of room temperature sintered transverse rupture
strength versus porosity for various sintered 18 µm prealloyed Cu-10Sn
bronze powder samples. In this case, the plot ignores neck size variations,
yet illustrates the important role of compact density on strength.

the particle packing coordination number. Densifica-
tion induces new particle-particle contacts, approach-
ing a limit of 14 contacts per grain as full density is
attained [1]. Fig. 14 shows a plot of sintered strength
versus porosity for the bronze. As shown in the plot,
sintered strength reduced with increasing porosity. The
dependence of sintered strength on porosity is exten-
sively documented for various materials in prior studies
[21–26].

The strength model is verified by comparison be-
tween model predictions and experimental data for sin-
tered bronze and steel powder compacts. Typical errors

between the experimental data and model predictions
are typically in the range of 10 to 15%. The model in-
dicates two parameters dominate strength gains—the
square of neck size ratio and fractional density. At low
temperatures, compact strengthening for distortion and
dimensional control needs to focus on promoting in-
terparticle neck growth. However, thermal softening
significantly decreases in situ strength at high temper-
atures, in the same temperature range where densifica-
tion becomes active. Thus, thermal softening is a dom-
inant factor that negatively impacts compact resistance
to distortion and damage during sintering densification.
Accordingly, excessive temperatures in sintering can
cause excessive thermal softening, leading to distortion
or loss of dimensional uniformity.

5. Conclusions
The strength of a sintered material is dominated by the
interparticle neck size ratio (X/D) and fractional solid
density (VS). Significant neck growth occurs during ini-
tial heating at low temperatures, leading to an apprecia-
ble increase in strength often with little densification.
Densification is favored by high sintering temperatures,
and further contributes to sintered strength. On the other
hand, thermal softening occurs at high temperatures,
leading to a reduced in situ strength. This latter phe-
nomenon is a major cause of distortion and loss of di-
mensional precision in sintering.

This strength model is developed for sintering pow-
der compacts, which combines sintering theories and
microstructure parameters, including interparticle neck
size, solid volume fraction, and grain coordination. The
model is verified by comparison with experimental data
for a prealloyed Cu-10Sn bronze and mixed elemental
Fe-2Ni-0.9C steel. The model can be extended to oth-
ers systems. It demonstrates interparticle neck growth
and densification are two key factors in determining
sintered strength.
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Appendix A. Flux equations
For surface diffusion and grain boundary diffusion, the
flux equations during sintering are based on the work
of Kuczynski [27] and Johnson [28], respectively.

J = DS
γ


kT

1

p

(
1

p
− 1

X
+ 2

D

)
(A1)

Ar = π Xδ (A2)

J = 4Dg
γ


kT

(
X + p

pX2

)
(A3)

124



where DS and Dg are the surface diffusion and grain
boundary diffusion coefficients, γ is the surface energy,

 is the atomic volume, k is Boltzmann’s constant, and
T is the absolute temperature, p is neck curvature ra-
dius, X is the neck diameter, D is the particle diameter,
Ar is the area through which mass passes, and δ is the
effective thickness of the surface layer or grain bound-
ary thickness.

The flux equations for the evaporation and conden-
sation, volume diffusion from the particle surface, and
volume diffusion from the interparticle grain bound-
ary were derived by Kingery and Berg [29], Kuczynski
[27], and Johnson [28], respectively.

J = αP
γ


kT

1

ρt

(
1

p
− 1

X
+ 2

D

)(
M

2πRT

) 1
2

(A4)

J = DV
γ


kT

1

p

(
1

p
− 1

X
+ 2

D

)
(A5)

J = 4DV
γ


kT

(
X + p

pX2

)
(A6)

where P is the vapor pressure at a flat surface, M is
the molecular weight of the material, ρt is the theoreti-
cal density of the material, DV is the volume diffusion
coefficient, and α is an accommodation coefficient and
is taken as unity. The area can be expressed as follows
[10]:

Ar = πp

[(
p + X

2

)
arcsin

(√
(D + 2p)2 − (X + 2p)2

D + 2p

)

− ρ

√
(D + 2p)2 − (X + 2p)2

D + 2p

]
(A7)

The above flux equations were used in prior studies
[9, 10, 14]. In the present study, all transport mecha-
nisms are considered to contribute to the neck growth si-
multaneously, while grain boundary diffusion and vol-
ume diffusion from the interparticle grain boundary are
the mechanisms causing shrinkage.

Appendix B. Stress concentration factor
The elementary stress formulas used in the design of
structural members are based on the members having
a constant section or a section with gradual change of
contour. However, such conditions are hardly ever at-
tained in many structural members. The presence of
shoulders, grooves, threads, and holes results in a lo-
calized high stress, known as stress concentration [30].
Similarly, there is a stress concentration at the neck re-
gion in sintered structures. The presence of stress con-
centration at the interparticle neck causes the measured
strength of a sintered structure to be lower than the nom-
inal material strength. The stress concentration factor
K is defined as the ratio of the peak stress in the body
(neck region) to the nominal stress,

K = σmax

σnom
(B1)

Figure 15 The schematic diagram showing the geometric profile of the
neck, which is approximated as two circularly linked cyliders, and in the
lower drawing this approximation is overlaid on the two particle sintering
geometry.

Figure 16 Stress concentration factor K for a tension bar of circular
cross section with a U-shaped groove [30]. The circular neck between
particles is approximated in this manner to estimate the stress concen-
tration factor assuming X/d = 1.05.

where σmax represents the maximum stress to be ex-
pected in the member under the actual load, and σnom
is the nominal stress.

The circular profile of a neck region is schematically
illustrated in Fig. 15. The neck between two sintered
particles is comparable with two cylinders, which are
circularly linked. The radius of the neck curvature is
estimated as follows [31]:

p = X2

8D
(B2)

where X is the diameter of interparticle neck, and D is
the particle diameter. With the assumption of circular
neck and X/d = 1.05, the stress concentration factor K
is estimated using Fig. 16.

References
1. R . M. G E R M A N , “Sintering Theory and Practice” (John Wiley

& Sons, New York, NY, 1996).

125



2. Idem., “Particle Packing Characteristics” (Metal Powder Industrials
Federation, Princeton, NJ, 1989).

3. I . H . M O O N and J . S . C H O I , Powder Metall. 28 (1985) 21.
4. A . C . N Y C E and W. M. S H A F F E R , Inter. J Powder Metall.

8(4) (1972) 171.
5. V . A . T R A C E Y , “Modern Developments in Powder Met-

allurgy,” vol. 15, edited by E. N. Aqua and C. I. Whitman
(Metal Powder Industries Federation, Princeton, NJ, 1985) vol. 15,
289.

6. G . A . S H O A L E S and R. M. G E R M A N , “Metall. Mater. Trans.
A,” 29A (1998) 1257.

7. Idem., ibid. 30A (1999) 465.
8. M. F . A S H B Y , Acta Metall. 22 (1974) 259.
9. K . S . H W A N G , R . M. G E R M A N and F . V . L E N E L , Powder

Metall. Inter. 23(2) (1991) 86.
10. S . G . D U B O I S , M. S. Thesis, The Pennsylvania State University,

University Park, PA, 1995.
11. R . M. G E R M A N and Z. A. M U N I R , Metall. Trans. B 6B (1975)

289.
12. Idem., Metall Trans. A 6A (1975) 2229.
13. C . M. S I E R R A and D. L E E , Powder Metall. Inter. 20 (1988)

28.
14. S . H . H I L L M A N and R. M. G E R M A N , J. Mater. Sci. 27 (1992)

2641.
15. G . N E U M A N N and G. M. N E U M A N N , “Surface Self-

Diffusion of Metals” (Diffusion Information Center, Bay Village,
OH, 1972).

16. I . K A U R , W. G U S T and L . K O Z M A , “Handbook of Grain
and Interphase Boundary Diffusion Data” (Ziegler Press, Stuttgart,
Germany, 1989) vol. 1.

17. E . A . B R A N D E S , (ed.), “Smithells Metals Reference Book,” 7th
edn. (Butterworth-Heinemann, Oxford, UK, 1992).

18. I . K A U R , W. G U S T and L . K O Z M A , “Handbook of Grain
and Interphase Boundary Diffusion Data” (Ziegler Press, Stuttgart,
Germany, 1989), vol. 2.

19. R . M. G E R M A N , Mater. Trans. 42 (2001) 1409.
20. X I A O P I N G X U , W U W E N Y I and R. M. G E R M A N , J. Mater.

Sci, to be published.
21. R . H A Y N E S , Metal Powder Report 46(2) (1991) 49.
22. Idem., Powder Metall. 14 (1971) 64.
23. E . N A V A R A and B. B E N G T S S O N , Inter. J. Powder Metall.

Powder Technol. 20(1) (1984) 33.
24. L . C I F U E N T E S and A. J . F L E T C H E R , ibid. 20 (1984) 51.
25. S . J A I S W A L , A. J . F L E T C H E R and R. T . C U N D I L L , ibid.

19 (1983) 51.
26. N . E . B A G S H A W , M. P . B A R N E S and J . A . E V A N S ,

Powder Metall. 10(19) (1967) 13.
27. G . C . K U C Z Y N S K I , Trans. AIME 185 (1949) 169.
28. D . L . J O H N S O N , Physics of Sintering 1 (1967) 22.
29. W. D. K I N G E R Y and M. B E R G , J. Appl. Phys. 26 (1955) 1205.
30. W. D. P I L K E Y , “Peterson’s Stress Concentration Factors,” 2nd

edn. (John Wiley & Sons, New York, NY, 1997).
31. J . L . J O H N S O N , Ph.D. Thesis, The Pennsylvania State Univer-

sity, University Park, PA, 1994.

Received 28 November 2000
and accepted 28 August 2001

126


